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Abstract  

In follow-up of an earlier paper by Komar it is shown that the Lagrangian of genera] 
relativity can be chosen so that S = S P""g,,, d3 x. This result holds without the require- 
ment of special boundary conditions. 

In an earlier paper one of us (A.K.) had shown that Dirac's choice of 
Lagrangian (Dirac, 1958, 1959) leads to an expression for the Hamilton- 
Jacobi functional that, except for a term that is functionally independent 
of  the g,,,, is homogeneous in the g,,,  of the first degree (Komar,  1970). 
I t  was conjectured that the extra term might indicate the existence of  a 
topological invariant. In this note we shall show that the extra term, being 
a three-dimensional divergence, can be made to vanish with an appropriate 
choice of  Lagrangian that  differs f rom that of Dirac only by a three- 
dimensional divergence. Dirac's and our Lagrangians lead to the same 
expression for the canonical momentum densities (the p ' " )  and the total 
Hamiltonian. (Our Hamiltonian density differs from that of  Dirac merely 
by a spatial divergence.) 

We adopt as our Lagrangian density the following expression: 

L = ~ / ( -g )  R + (Se~oo).0 (1) 
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The resulting expressions for the canonical momentum densities are: 

pm" = x/--g(em" eab -- ema e'b) { O } ab (2) 

The notation adopted in equations (1) and (2) is the following: g is the 
four-dimensional metric determinant, g~a are the components of the four- 
dimensional contravariant metric tensor, and e m" represent the elements of 
the matrix inverse to the 3 • 3 matrix gin., just as in Dirac's papers, 

emn = gmn _ gmO gnO 
g00 (3) 

When the field equations are satisfied, the action functional becomes 
simply: 

S = f S:d 3 x (4) 

defined on a space-like three-dimensional hypersurface. This is because the 
four-dimensional curvature scalar R vanishes on account of Einstein's field 
equations. By a straightforward computation one can show that the ex- 
pression (4), with S a taken from (1), equals the integral 

I = f p m n  gmn d3 x (5) 

taken over the same domain of integration. In view of the fact that in the 
Hamilton-Jacobi theory the canonical momentum densities are the varia- 
tional derivatives of S with respect to the respective configuration variables, 
in our case the gm,, the first-degree homogeneity of S with respect to the 
g,~, follows immediately. Incidentally, the two integrals (4) and (5) can both 
be cast into the simple form: 

v/(-g) g to 
- 2  f gOt S = I =  ~/ (- ~ - 6  ) ,pd3x  (6) 
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